Exercises 319

characteristics can simplify some multi-tasking problems as we illustrated when
considering the transfer of the controller parameters. Simplifications of this sort are
part of the art of engineering; however, they must be used with care and must be
documented — in particular the conditions for which the simplification is valid must-
be clearly stated.

EXERCISES

7.1

7.2

7.3

The standard input routines in languages such as FORTRAN, Pascal and BASIC
cannot be used within a timed loop to obtain information from the keyboard. This
is also true of Modula-2. Why can’t we use the standard Modula-2 routines?

A plant operating in a remote location is controlled by an embedded computer control
system, The plant operates in two modes referred to as Amode and Bmode. The
control algorithm for Amode s of the form

m(n) = Ae(n} + Be(n — 1) + Ce(n - 2} + Dm(n ~ N+ Em@n-2)
and for Bmode
mn) =Kje(n) + Kze(n~ 1) + Kse(n — 2}

where e{n} =R —c(n)
R = set point
¢(n) = the measured output of the plant at interval n.

The change-over from Amode to Bmode is to be made when ¢(n) > ChangeA for five
successive readings. The change-over from Bmode to Amode is to be made when
c{n) < ChangeB for five successive readings. The parameters ChangeA and ChangeB
and the set point R can all be changed from a central station.

A change to the value of R requires a change in the values of ChangeA and
ChangeB. The controller parameters 4, B, C, D, E and K\, Kz and K; also need
changing. They must be changed as the set {4, B, C, D, E, K, K2, K3} and not as
individual elements. The data transmission link to the remote station has a slow
transmission speed and is subject to frequent bursts of interference. You can assume
that the data transmission system support software contains error checking software
and organises retransmission of erroneous data.

Discuss the problems of designing the software for the embedded computer
system and discuss possible ways of dealing with the slow and unreliable data
transmission system.

What is the principal difference between a pool and a channel? Explain why you
would use (a) a pool and (b) a channel.

8

Real-time System Development
Methodologies — 1

This chapter begins with an overview of the general approach now being adopted
in the specification, design and construction of complex real-time systems, followed
by a brief description of some of the standard methodologies. The Yourdon
methodologies are then described in detail. The aims of the chapter are to:

® Show how specification, design and implementation can be considered as a
process of modelling.

® Describe thé major methodologies.

® Provide a more detailed understanding of one methodology, the Yourdon
methodology.

8.1 INTRODUCTION

The production of robust, reliable software of high quality for real-time computer
control applications is a difficult task which requires the application of engineering
methods. During the last ten . years increasing emphasis has been placed on
formalising the specification, design and construction of such software, and several
methodologies are now extant. The major ones are shown in Table 8.1. All of the
methodologies address the problem in three distinct phases. The production of a
logical or abstract model — the process of specification; the development of an
implementation model for a virtual machine from the logical model — the process
of design; and the construction of software for the virtual machine together with
the implementation of the virtual machine on a physical system — the process of
implementation. These phases, although differently named, correspond to the
phases of development generally recognised in software engmeermg texts. Their
relationship to each other is shown in Figure 8.1.

Abstract model: the equivalent of a requirements specification, it is the result
of the requirements capture and analysis phase.

Implementation model: this is the equivalent of the system design; it is the
product of the design stages — architectural design and the detail design.

320

Introduction] 321

Table 8.1 Summary of design methodologies

MASCOT Design, construction, operation and Jackson and Simpson (1975)
test tools

CORE Controlled Requirements British Aerospace, Systems
Expression Designers (1979}

PAISLey Specification and simulation tools Zave (1982)

DARTS Design and Analysis of Real-Time Gomaa (1984)
Systems

JSD Jackson System Development Jackson (1983)

Yourdon (a) Structured design and development Ward and Mellor (1986)
of real-time systems

Yourdon (b) Strategies for real-time system Hatley and Pirbhai (1988}
specification

HOOD Hierarchical Object-Oriented CISI Ingenierie, CRA AfS
Design Matra Aerospace (1989)

Implementation: the process of mapping the implementation model onto the
physical hardware, identifying the software modules and coding them.

Although there is a logical progression from abstract model to implementation
model to implemented software, and although three separate and distinct artifacts
— abstract model, implementation model, and deliverable system — are produced,
the phases overlap in time. The phases overlap because complex systems are best
handled by a hierarchical approach: determination of the detail of the lower levels
in the hierarchy of the logical model must be based on knowledge of higher-level
design decisions, and similarly the lower-level design decisions must be based on the
higher-level implementation decisions. Another way of expressing this is to say that
the higher-level design decisions determine the requirements specification for the
lower levels in the system.

All the methodologies require the support of CASE (Computer-Aided Software
Engineering) tools for their effective use. Without such tools the methods become
too laborious for use on large systems and many of their benefits in terms of
enforcing consistency are lost. The number and range of CASE tools available is
growing rapidly and some simple ones are now available for PCs (McClure, 1989).

We will consider MASCOT and the two Yourdon methodologies in some detail
in later sections and also discuss the use of PAISLey. An introduction to CORE,
JSD and HOOD can be found in Cooling (1991, Chapter 10).

CORE (Mullery, 1979) is specifically designed for the requirements capture and
analysis phase of the development, that is the construction of the requirements
specification. Subsequent design and implementation has to use other
methodologies. It is an attempt to find an approach that will reduce the amount of
information that the customer ‘forgot to tell one about’” — of course this will never
be reduced to zero.

322 Real-time System Development Methodologies — 1

User's i -
Specification:

concept
Abstract model
(essential, logical
requirements)
Requirements Technology
capture and non-specific
analysis
Enhanced
{ abstract model
Design
Design guidelines
Implementation
1 maodel
(architecture Technology
model) specific
Realisation
1 Real
system

Figure 8.1 Software modelling.

The Jackson System Development methodology has been widely used in non-
real-time systems, as was the Jackson Structured Programming methodology, but
has only recently been applied to real-time systems (Cooling, 1991, p. 358). Itis a
data-driven method and is now supported by a number of CASE tools (Program
Design Facility, Speedbuilder and Network Builder) which are supplied by the
Michael Jackson Company.

The abstract model in JSD is a network of processes. There are three types

Introduction 323

of process:

1. Input: these detect actions taking place in the environment (events) and
pass these events to the internal system. ‘

2. Output: these pass the system response back to the environment.

3. Internal: these deal with events reported by the input processes and actions
resulting from other internal processes; they pass events and actions to
output and other internal processes.

The processes are connected in two ways to form the network:

1. by buffered asynchronous data streams;
2. by state vector connections.

By using the state vector ong process can inspect the internal state of another
process. .

In common with other methodologies originally developed for non-real-time
applications there is no formal method of incorporating timing constraints. Also,
as we will see when dealing with the Yourdon methodologies, JSD provides a
notation for representing a specification and a design. It does not perform the
design. JSD is a data-flow method and the basic design technique is to use functional
decomposition and to preserve natural data flows.

Once the design has been produced and an implementation mode! obtained,
then the realisation of this model proceeds in a systematic manner. With the
appropriate CASE tools much of the code for JSD designs can be automatically
generated, particularly if the implementation language is Ada or occam 2.

HOOD is a-new addition to the real-time methodologies and is based on an
object-oriented approach. It is targeted at implementations based on the use of Ada
but can be adapted for use with other programming languages. Like MASCOT it
is meant to be a design method which takes a requirements specification obtained
by other means as its starting point. Also like MASCOT the diagrams used for the
design have a direct textual equivalent which formalises the design and which can
be used in the implementation stage of the development.

In recent years there has been extensive consideration of formal (mathematical)
techniques for the specification of systems. The most widely used formal method is
VDM and the language Z is also gaining support. These techniques are aimed at
producing a formal specification of a system. The benefit of a formal specification
is that it is possible to prove that it is consistent (it is not possible to prove that it
is complete — there is still the ‘we forgot to mention’ factor — but formal analysis
of consistency may well reveal incompleteness). The second advantage of formal
techniques is the possibility (theoretically) of transforming a specification intg a
realised implementation and proving that each step int the transformation is correct.
In practice the proofs are very difficult. A major limitation of the formal
specification language approach is that at present none of the languages make any
provision for the incorporation of timing constraints. In the next chapter we

‘324 Real-time System Development Methodologies — 1

describe one methodology (PAISLey) that has attempted to combine formality and
timing constraints.

8.2 YOURDON METHODOLOGY

The Yourdon methodology has been developed over many years. It is a structured
methodology based on using data-flow modelling techniques and functional
decomposition. It supports development from the initial analysis stage through to
implementation. Both Ward and Mellor (1986) and Hatley and Pirbhai (1988) have
introduced extensions to support the use of the Yourdon approach for the
development of real-time systems and the key ideas of their methodologies are:

® subdivision of system into activities;

hierarchical structure;

separation of data and control flows;

no early commitment to a particular technology; and
traceability between specification, design and implementation.

Although the original method was developed as a pencil and paper technique
most benefit can be obtained if there is CASE tool support and many software
engineering CASE tools now support both the Ward and Mellor and the Hatley and
Pirbhai versions of Yourdon. Examples are Software Through Pictures and
EasyCase Plus.

There are many similarities between Ward and Mellor and Hatley and Pirbhai
but to avoid confusion we will deal with them separately. As an example we shall
use the system which is described in the next section.

8.3 REQUIREMENTS DEFINITION FOR DRYING OVEN

1. Introduction

1.1 Components are dried by being passed through an oven. The components are
placed on a conveyor belt which conveys them stowly through the drying oven.
The oven is heated by three gas-fired burners placed at intervals along the
oven. The temperature in each of the areas heated by the burners is monitored
and controlled. An operator console unit enables the operator to monitor and
control the operation of the unit. The system is presently controlled by a
hardwired control system. The requirement is to replace this hardwired control
system with a computer-based system. The new computer-based system is also
to provide links with the management computer over a communication link.

1.2 The general arrangement of the system is shown in figure 1.1 [Figure 8.2].

Requirements Definition for Drying Oven 325

Heaters

[ndicator Indicator
light \ / \ / \ / light

Preheat Drying Cooling | Component

Guard | | / Guard
-~

Nl — Y%

kiR

Conveyor

Thermocouples
{temperature measurement)

Figure 8.2 General arrangement of drying oven.

2. Input{Output

2.1 The inputs come from a plant interface cubicle and from the operator. There
will need to be inputs obtained from the communication interface.

2.2 Plant Inputs

2.2.1 A thermocouple is provided in each heater area — the heater areas are
pre-heat, drying, and cooling. The inputs are available as voltages in
the range 0 to 10 volts at pins 1 to 9 on socket j22 in the interface
cubicle. '

2.2.2 The conveyor speed is measured by a pulse counting system and is
available on pin 3 at socket j23 in the interface cubicle. It is referred
to as con-speed.

2.9.3 There are three interlocked safety guards on the conveyor system and
these are in-guard, out-guard, and drop-guard. Signals from these
guards are provided on pins 4, 5, 6 of socket j23. These signals are set
at logic HIGH to indicate that the guards are locked in place.

2.2.4 A conveyor-haited signal is provided on pin 1 of socket j23. This signal
is logic HIGH when the conveyor is running.

2.3 Plant Outputs

33.1 Heater Control: each of the three heaters has a control unit. The input
to the control unit is a voltage in the range 0 to 10 volts which
corresponds to no heat output to maximum heat output.

2.3.2 Conveyor Start-up: a signal convey-star! is output to the conveyor
motor contro! unit. A second signal convey-stop is also output to the

326

2.4

2.5

2.6

3.2

33

34
3.5

3.6

Real-time System Development Methodologies — 1

motor control unit. The connections are to pins 1, 2, 3 on j10 for
convey-start, and to pin 5 on j10 for convey-stop.

2.3.3 Guard Locks: asserting the guard-fock line, pin 8 on j10, causes the
guards to be locked in position and turns on the red indicator lights on
the outside of the unit,

Operator Inputs

2.4.1 The operator sends the following command inputs: Starr, Stop, Reset,
Re-start, and Pause. The operator can also adjust the desired set points
for each area of the dryer.

Operator Outputs

2.5.1 The operator VDU displays the temperature in each area, the conveyor
belt speed, and the alarm status. It should also display the current date
and time and the last operator command issued.

Communication Inputs

2.6.1 These have yet to be defined.

Functional Specification

Start-up: starting from cold the operator checks that ali the guards are closed
and issues the Start command. The guards are locked and if locking is correctly
achieved the heaters are switched to on, Under this condition maximum heat
is supplied. The temperature is monitored and when each area reaches a
temperature within 20% of its set point control of the heaters is switched to
normat.

Conveyor Start-up: when all areas have switched to normal control the
conveyor start-up sequence is initiated. The conveyor is stepped through the
start-up procedure. Motor position 1 is selected and held until the speed
reaches 0.5 ft/min; then position 2 is selected. This is held until the speed
reaches 1.5 ft/min; at this point the normal running position 3 is selected. If
the conveyor fails to reach the desired speed within 30 seconds the conveyor
is stopped and the conveyor-fault signal is asserted. The normal conveyor
speed is 8 to 10 ft/min. If at any time the speed drops below this for more than
30 seconds the conveyor-alarm signal should be asserted.

Temperature Monitoring: the temperature measurement for each area is read
at 2 second intervals. If the temperature for an area varies by more than 5%
from the set point for that area then an alarm should be asserted.

Each area is controlled using a PID control algorithm.

Conveyor Failure: if the conveyor fails to start the operator can issue a Reset
command which closes the whole system down. When it has been closed down
and the system checked for obstructions the operator can issue the Start
command again, If the conveyor stops or slows during normal running the
operator can issue either a Re-start command which causes the conveyor first
to be stopped and then to enter the full conveyor start-up cycle, or a reset
signal that causes the whole system to be closed down.

Conveyor Pause: during normal running the operator may issue a Conveyor

Ward and Mellor Method 327

Pause command. This halts the conveyor. It may for example be used to
permit clearance of a blockage. The conveyor can be re-started by the operator
issuing the Re-start command.

3.7 At any time during normal running the operator may issue the Stop command.
The response is to turn off the heaters and the conveyor. When the conveyor
stopped signal is asserted the guards are unlocked and the display lights are
turned to green.

8.4 WARD AND MELLOR METHOD

The outline of the Ward and Mellor method is shown in Figure 8.3, The starting
point is to build, from the analysis of the requirements, a software model
representing the requirements in terms of the abstract entities. This model is called
the essentigl model. 1t is in two parts: an environmental model which describes the
relationship of the system being modelled with its environment; and the behavioural

Abstract model

Environmental mode! Behavioural model

Description of behavioural
response to environment

Description of
environment

Transformation

Context diagram

Event list

schema

Data schema

Description of
boundary
separating the
system from its,
environment

Description of
external events in
the environment
to which the
system must
respond

Description of the
actions taken by
system in response
to events

Description of the
information the
system must have
in order to
respond .

Figure 8.3 Outline of abstract modelling appro

ach of Ward and Mellor.

328 Real-time System Development Methodologies — 1

model which describes the internal structure of the system. The second stage — the
design stage — is to derive from the essential model an implementation model which
defines how the system is implemented on a particular technology and shows the
allocation of parts of the system to processors, the subdivision of activities allocated
to each processor into tasks, and the structure of the code for each task.

The essential model represents whgr the system is required to do; the
implementation model shows how the system will do what has to be done. The
implementation model provides the design from which the implementors of the
physical system can work. Correct use of the method results in documentation that
provides traceability from the physical system to the abstract specification mode].
The type of documentation produced is shown in Figure 8.4.

8.4.1 Building the Essential Model — tha Environmental Model

For most real-time systems the environmental model will comprise a confext
diagram and an evens list and the entity relationship diagram will not be used.
Figure 8.5 shows a context diagram for the drying oven. The rectangular boxes
represent terminator blocks which are entities that exist in the environment. At this
stage we are interested only in the logical function of the signals that connect these
units to the system and not in the details of the units or the physical connections
between the units and the system.

The /{@ Contexy diagranT,' T
Ny

environmental

model Entity relationship diagram (ERD)—L \
~
© Data-flow diagram (DFD) _]-\ ~ \\

The
essential

model \ The \
behavioural @ State transition diagram (STD} —I\ ~ Y
model ~
@ Entity relationship diagram (ERD) —,\
Data
The dictionary
processor BFD|{ _ _——
environment —] STD
model (PEM) s
— /
The The software DFD - /
implementation environment STD b— —— — — 7
mode] mode| (SEM) ERD /
\ ~
o -
The code ® Program structure chart ﬁl— -
organisation
model (COM)

Figure 8.4 Relationship between models and diagrams.

Ward and Mellor Method

329
TEMPERATURE HEATER
TRANSDUCERS UNITS
OvenTemperatures
CONVEYOR HeatOutput
SPEED
SENSOR
' ConveyorSiar,
inGuard _ Position 2 _ | CONVEYOR
SAFETY Outh}_ﬂl‘}_i - - CONTROLLER _ _N‘_)fTil _ —w*| CONTROLLER
GUARDS |~ 7~~~
_ DropGuard _ - _Conveyor __
e - Stop
~ ~
Qfo\‘\, ~ GuardLock
eﬂo‘/ - AN
CONVEYOR | o~ S
FAULT |-~ \1 GUARD LOCK
SENSOR _
OPERATOR’S
CONSOLE

Figure 8.5 Drying oven — context diagram.

The system that we are building is represented as a single bubble. The directed
lines represent data and control information that is passing between the system and
the environment. The flows are classified as shown in Table 8.2.

Continuous flows are used to represent data or control signals for which there
is always a value available to the system. Discrete fiow is used for data or control
which is generated as separate items or transactions and once the system has received
or transmitted the item it is no longer available. A loose analogy is that discrete
flows are the equivalent of a connection based on a channel and continuous flows
with a connection based on a pool. As the context diagram is drawn, all flows should
be named and each should be entered into a data dictionary. A data dictionary (also

Tabie 8.2 Flow notations — Ward and Mellor

Data Continuous Solid line, double arrow head
Discrete Solid line, single arrow head

Control Continuous Dotted line, doubie arrow head
Discrete Dotted line, single arrow head

330 Real-time System Development Methodologies — 1

known as a requirements dictionary) contains entries describing, in a rigorous
manner, all the data elements of the System such that the user and system analyst
will have a common understanding of them. Data elements in this sense include
control flows as well as data flows and it is also common practice to include in the
dictionary descriptions of the activities (see below) that the system performs (hence
the use of the name requirements dictionary).

A data dictionary always forms part of a CASE tool. The exact structure can
take many forms but must include the following information:

® Name — the primary name of the data or.control item, or of an external
entity, or of a process (activity).

® Alias — other names used instead of the primary name.

® Usage — where and how it is used, that is a listing of the processesfactivities
that use it and whether it is an input or output to a process or a store or
external entity,

® Content description ~ a description using a standard notation of the
conteni.

® Other information - data Lypes, preset values, range of values, and other
restrictions.

When using a CASE tool once an item has been entered into the dictionary
consistency of naming can be enforced. For example, if a name already exists in the
dictionary any attempt to use the name for another flow will be detected and the
user will be warned.

An example of a data dictionary is given in Table 8.3, The symbols CD, DC
are used to indicate continuous data and discrete control flows respectively and T
is used to indicate that the entity is a terminator block. We would need to use
symbols to indicate discrete data (DD) and continuous control (CC) as well as data
and control stores (DS and CS) and processes (P). The first entry in Table 8.3 shows

Table 8.3 Example of a data dictionary

Name Description

OvenTemperatures CD PreHeatTemp + DryingTemp + CoolingTemp .
*output from TEMPERATURE TRANSDUCERS,
input to DRYING OVEN CONTROLLER*

PreHeatTemp CD range 0-100°C * measurement of temperature in
PreHeat area of oven *
ConveyorStart DC range [onfoff] * <utput from DRYING OVEN

CONTROLLER, input to CONVEYOR MOTOR
CONTROLLER *

GUARD LOCK T * external unit controls operation of guard locks *

Ward and Mellor Method 331

a compound or group data flow made up of three elements representing the
temperature measurement flows from each area of the oven. Group flows are widely
used since they provide a concise means of describing the information that is being
handled. For example, we could have used a group flow GuardStatus to describe the
three control flows InGuard, OutGuard and DropGuard shown in the context
diagram (Figure 8.5).

Associated with the context diagram is an event list. This is a table which lists
all the events that can cause a change in the system and result in a change in an
output. An event list for the drying oven is shown in Table 8.4. Note that the event
list shown in Table 8.4 also shows the time response required for the response to
the various events including the cycle time. This is not part of the Ward and Mellor
requirement but is important and should be added. 1f possible the type of time
constraint — hard or soft — and any tolerances should also be indicated at this stage.

8.4.2 Building the Essential Model — the Behavioural Model

The behavioural model shows how the system should respond to events taking place
in the environment. A hierarchical approach to building the model is used. The
system is divided into the various functions or activities that it has to perform. These
functions are referred to as transformations in the Ward and Mellor method and
are shown on a (transformation diagram. Figure 8.6 shows the first-level
transformation diagram for the Drying Oven.

The bubbles drawn with solid lines represent data transformations and those
drawn with dotted lines represent comtrof transformations. The transformation
ControlAreaTemp has a double line round part of the bubble which indicates that

Table 8.4 Event list for drying oven

Event Action Response Time
Start Lock guards Guardlock <0.5s
InGuard Start heat up Ser maximum
OutGuard cycle heat output <0.5s
DropGuard when heat normal ConveyorStart ?
Pause Stop conveyor ConveyorStop <0.5s
ConveyorFault Raise alarm ConveyorAlarm <0.1s
Stop Close system down ConveyorStop

Heaters off <05s
QOvenTemperature Do control HeatOutput Cyclic 1.0s
ConveyorSpeed Check for normal ConveyorAlarm Cyclic 5.0

332 Real-time System Development Methodologies — 1

there are multiple instances of this transformation. It is shown in this way as the
temperature control has to be replicated for each of the three areas of the oven. The
dotted lines labelled ENABLE and DISABLE that enter ControlAreaTemp are
known as prompts and indicate whether a particular transformation is active (that
is, running) or not. Transformations without a prompt attached are assumed to be
running all the time the system is running. The two entities placed between parallel

\

CutGuard \\\ InGuard
~ - . \
DropGuard ~ ‘\
~ ~
N DU |
~ } ~
> Read
y Guard \,
\ Status o
OperatorCommands N _3.., JEAEN
GuardLocked
Stop S. -~
—————— - \
Process Pause Control Y=~ __ GuardLocked
Operator | _ 7295 _ .\ Oven ! ~ -
Input St . 4 /7~ GuardUnlocked
- PN - T .
o]ﬁ\ ‘. Start
//’ A ! :\\C v
. S , * \Conveyor
p ; -
AreaSetPoints - \ A FPosition 2
“DISABLE ,/Conveyor \’\ -
’ / / Control v Normal s

’ /
ENABLE / . m=
; P . \ Conveyor

/
’ s 3 A
, /T » wn Conveyoer
empNormal ~
\ e P ;‘ - = . Start
- A ~ ~
7 A .
OvenTemperatures Control / A N
AreaTemp | HeatOutpus 7 .
2 / R
/ -
S ConveyorStop

ConveyorSpeed

Check
Conveyor
Speed
6

™~ _ ConveyorAlarm
-

-
= m

Figure 8.6 Level 1 transformation diagram.

Ward and Mellor Method 333

lines and labelled AreaSetPoints and GuardLocked are respectively a data store and
a control store. Flows entering and leaving stores are not named as they are assumed
to take the name of the store. Flows that enter and leave the diagram must appear
on the context diagram. Each transformation is given a number, for example
CoutrolConveyor is numbered as 5 in the diagram. The single transformation in the
context diagram is assigned the number 0 but this is usually not shown. All level |
transformations have single-digit numbers (this indicates that they are level 1).
Building the model proceeds by taking each transformation in the level |
diagram and breaking it down into smaller units. For example, Figure 8.7 shows the
expansion of ControlAreaTemp. This diagram contains one new name, TRIGGER.
This is a prompt which is used to indicate that the transformation is run once each
time the TRIGGER becomes true. It is thus a way of indicating that a
transformation runs in response to either a periodic signal or an event. You should

OvenTemperatures

Read TRIGGER

Temperature
Transducer
1

AreaTemp

Check
Temperature

AreaSetPoints

-~~~ ENABLE
.

~
~

Start-up
Control
3

HeatQutput

N\

Figure 8.7 Level 2 transformation diagram.

334 Real-time System Development Methodologies — 1

notice that the input to ReadTemperatureTransducer is a continuous data flow and
the output is a discrete data flow; this is a consequence of the transformation being
triggered. Using the data store HeatQutput provides the reverse process of
converting a discrete data flow into a continuous data flow.

Two other conventions are illustrated in the diagram: a common data flow
passing to several transformations — AreaTemp — and a data flow being supplied
from either of two transformations — HeatOutput. (The flow notation is
summarised in Figure 8.8.) The transformations on this level 2 diagram (Figure 8.7)
are numbered with a full stop in front of the number; this indicates that for full
identification the number of the transformation diagram should be added. Thus the
transformation CheckTemperatureLimits is 2.2 (the presence of two digits indicates
that it is a level 2 transformation).

The process of subdivision continues until the analyst decides that no useful
purpose is served by splitting up a transformation into smaller units. At this point
a transformation specification is drawn up. For data transformations a process
specification (PSPEC) is produced and for control transformations a control
specification (CSPEC) is produced. These are described in sections 8.4.4 and 8.4.5
below.

8.4.3 Behavioural Model — Rules and Conventions

There are a number of rules and conventions associated with transformation

Notation Meaning

B and C are two subsets of 4 which
pass on to two different transformations

All of A is passed on to two different
transformations

B and C come from two different
transformations and are combined to
form a single data flow

All of A may be provided by either of
two different transformations

LA

Figure 8.8 Summary of data-flow notation,

Ward and Mellor Method 335

diagrams and in order to construct and interpret the diagrams these rules must be
understood.

1. Data transformations with discrete input flows are assumed to be data
triggered and hence there can be only one input from another trans-
formation (inputs from data stores and prompts do not count). The reason

NEW
ComroiParamet
ers

COmroHerStatus

(a)
NewControl
Parameters
ControllerStatus
SystemStatus
(b}
NewComroIParamelcrs
()

Figure 8.9 Synchronous data flows: (a) ambiguous diagram; {b} merged flows; (c} use
of data store.

336

Real-time System Development Methodologies — 1

for this restriction is to avoid ambiguity. Consider the transformation
shown in Figure 8.9a: shouid this be interpreted to mean that the
transformation executes only if both inputs are present simultaneously? Or
is it to be interpreted that one input will be stored until the other arrives
and the transformation executed?

To avoid this ambiguity the transformation must be represented as
shown in either Figure 8.9b or 8.9c. Figure 8.9b shows the input as a
composite data flow and the convention is that the transformation can
only be triggered when all elements of a composite data flow are present.
In Figure 8.9c a data store is used to hold one of the data flows.
The interpretation of this diagram is that UpdateSystemStatus runs
when a transaction ChangeSystemStatus appears and SystemStatus
is held in the data store. UpdateController runs when a transaction
NewControlParameters appears and it obtains the current SystemStatus
from the data store. This implies that the data store will have to have the
characteristics of a pool since it may be read many times.

There is no need to restrict the number of continuous data flows
entering a transformation since by definition a data value is always
available; however, it is normal to show only one such input from another
transformation and not to mix discrete and continuous data flows to the
same transformation.

Control transformations — there is no restriction on the number of inputs
to a control transformation.

Input and output types: the permitted mixture of input and output flows
from the transformations is summarised in Table 8.5.

Balancing — since transformation diagrams at a given level represent the
same information as the diagram at the next higher level (they simply
provide more detail) the inputs and outputs must match the inputs
and outputs of the higher-level diagram. The process of checking that the
inputs and outputs correspond is referred to as balancing. Referring to
Figures 8.6 and 8.7 above, the input to TFD 2 is OvenTemperatures and the
output is HeatOutput; thus they balance with the input and output to
ControlAreaTemp in TFD 0.

Table 8.5 Summary of inputs and outputs for
transformations

Transform Inputs Cutputs

Data Data flow Data flow
Prompt Control flow

Control Control flow Control flow

Prompt Prompt

Ward and Mellor Method 337
8.4.4 Process Specifications

The process specification (PSPEC) is a description of the actions that the data
transformation has to carry out. The description can be given in any form that the
user wishes. Ward and Mellor (1986) discuss a number of methods of specifying data
transformations including the standard procedural techniques of program design
languages, pseudo-code and structured English. They aiso discuss and give examples
of a non-procedural method based on the use of precondition—postcondition
statements (Heniger, 1980). If the goal of producing an essential model devoid of
implementation constraints is to be achieved it would seem important that
specifications at this stage are expressed non-procedurally. The choice of
methodology is open: any of the rapidly developing formal techniques can be used.

At some point in the design the transformation specification will have to be
expressed procedurally and often a transformation will be specified using a
procedural notation. The most common method is to use some form of pseudo-
code. Pseudo-code can be thought of as an informal programming language. For
example, the PSPEC for ReadTemperatureTransducer in Figure 8.7 could be
written as follows:

PSPEC 2.1 ReadTemperatureTransducer

INPUTS: OvenTemperatures
QUTPUTS: AreaTemp

Every 1.0 seconds DO
read OvenTemperatures :
convert to internal data representation
output converted value as AreaTemp

END.

Most CASE tools provide a means by which PSPECs can be stored in text files
which can be manipulated using a text editor. Many auiomatically insert in the file
the names of the inputs and outputs {obtained from the transformation diagram)
of the transformation for which the PSPEC is being created. As development
proceeds the PSPEC can gradually be elaborated to form a code segment in the
appropriate programming language.

8.4.5 Control Specil’icl.nionl

Control transformations are described using CSPECs. The most usual form for a
CSPEC is a state transition diagram (STD) and/or a state transition matrix (STM).
The general form of the STD is shown in Figure 8.10 and of the associated STM
in Figure 8.11. The action resulting from an event may be the generation of an event
signal (control flow) or the generation of a prompt, either an ENABLE/DISABLE

338 Real-time System Development Methodologies — 1

Name of state Rectangles used to

/ indicate ‘states’

Eveni(s) causing
change of \ (™ STATE |

state

Event A

/.—Am r*—

Action(s} resulting
from event or change of state STATE 2
Event C Event E
Action D Action F
STATE 3

L

Figure 8.10 State transition diagram.

Present
state Even: A Event C Event E
STATE Next
sTATE | 2 I R B
l Action Action
B
STATE Next
STATE “__ﬁ_3_____;__5“_‘fe__
2 Action Action
D c
STATE Next
STATE R 72_) 7'“Stalte_)
’ Action Action
F

Figure 8.11 State transition table.

Ward and Mellor Method 339

or a TRIGGER. An example of a CSPEC is given in Figure 8.12. The associated
STM is shown in Figure 8.13.

The blank entries in the STM represent non-operational states or undefined
states. The value of using an STD to represent the CSPEC is that it leads to a
concentration on the normal behaviour of the system. However, the associated STM
should always be drawn up as the STM reveals the undefined states which frequently

OFF
Start

enable 'LockGuards’
LOCKING
GUARDS

Guards locked
enable ‘ControlAreaTemp’
1
HEATERS
STARTING
Temp normal

enable ‘StartConveyor’
! Start
CONVEYOR enable 'LockGuards’
STARTING enabie ‘StartConveyor’

Conveyor at speed CONVEYOR
PAUSED
NORMAL
RUNNING Pause
Stop enable ‘StopConveyor’
enable *StopConveyor’
enable ‘UnlockGuards’
CSPEC 4

Figure 8.12 Example of a CSPEC in state transition diagram form.

340

represent exceptions which the designer must take into account,
referring to Figure 8.13 we find that there is only one entry in the ¢
event Stop. It should be clear that we need to know what to do if t

Real-time System Development Methodologies — 1

For

when the system is in all other states, What action should be taken if

TempNormal occurs when in state LockingGuards? It shouid be
should not occur and hence it must represent a fault in the system.

example,

olumn for the
he Stop occurs

the event

clear that this
We will examine

Guards Temp Conveyor at
Start Stop Pause tocked normai speed
LOCKING
GUARDS
OFF I S e St Ky R
lock
guards
HEATERS
LOCKING _k__i__i__i__fT'iR—[iN_G ______ o
GUARDS
control area
temp
CONVEYOR
HEATERS | o o oo | _|STARmNG
STARTING
start
conveyor
NORMAL
CONVEYOR_i__i__i__“_7__?__7__ﬁ_liuziNl_Noi
STARTING
CONVEYOR
OFF
NORMAL __‘__m_i_f‘A}JSED_i__"_k__H__i_
RUNNING
SLOp conveyor stop
unlock guards| conveyor
CONVEYOR
CONVEYOR_S—[AR_T!_N(L__i_ T
PAUSED [ock guards
start conveyar

Figure 8.13 Example of state transition matrix.

Ward and Mellor Method 341

an alternative approach to the use of state transition diagrams and state transition
matrices in Chapter 10.

8.4.6 Cheacking the Essential Model

Ward and Mellor recommend checking the transformation schema of the
behavioural model in two ways. The first is to use the rules for data flow to check
for consistency. This is the equivalent of checking the syntax of a program and can
be dane by hand or, given the advances in graphics processing capabilities in recent
years, it is now feasible to construct a graphics compiler to perform the necessary
checks. The second level of checking is to determine whether the model can be
executed ~ can it in some sense generate outputs from a given set of inputs? The
approach suggested by Ward and Mellor is based on ideas derived from work on
Petri nets. We shall deal with this in Chapter 10.

At this stage the abstract modelling is complete and we are ready to move to
the implementation stage.

8.4.7 Building the Implementation Model

The construction of the implementation model divides into four phases:

e enhancing (or elaborating) the environmental model;

® allocation of processors;

e allocation of activities (transformations} to tasks for each processor; and
e definition of the structure of each task.

The latter three can be considered as being concerned with the allocation of
resources and will be dealt with together.

8.4.8 Enhancing the Model

Enhancing the mode! is concerned with:

e clarifying the boundaries between the system and the environment and
determining what activities the system — as defined by the behavioural
model — will carry out and what will be done as part of the environment;

e claborating data descriptions; and

e adding timing and process activation information.

Design begins at this stage and we have to begin to take into account the technology
involved in the system,

In the context diagram we treated the terminal units as virtual devices which we
assumed provided a clean input signal to the behavioural model. We now have to

342 Real-time System Development Methodologies — 1

examine each detail to find out what sort of signal they provide and how much
processing of that signal is required before it can be passed to the behavioural
model. For example, consider the terminal unit TEMPERATURE
TRANSDUCERS and take just one element for the PreHeat area of the oven. From
the data dictionary we find that PreHeat is assumed to be provided as a temperature
measured in degrees Centigrade in the range 0 to 100 and that it is a continuous data
value. From the requirements document we find that the transducer is a
thermocouple, the signal of which is amplified and is available as a voltage in the
range 0 to 10 volts. We thus have to sample and digitise the thermocouple output,
using an analog-to-digital converter, and then convert it to degrees Centigrade. The
actions are shown in Figure 8.14, which represents part of the terminator block
TEMPERATURE TRANSDUCERS; the rest of the block will consist of the
conversion units for the other temperature measurements. In Figure 8.14 we have
assumed that a precision of 12 bits will be adequate for the ADC. The data
dictionary entry for PreHeatTemp will be updated to include information on the
resclution of the temperature measurement (1 in 4096).

If we examine Figure 8.7 we find that the TRIGGER prompt does not have any
timing information attached to it; as part of the enhancement we would add the
comment (* 1 second, cyclic *) to it to indicate that the ReadTemperatureTransducer
transformation has to be executed every | second.

Enhancing the model is a process of adding detail and beginning to take into
account the possible technologies that might be used in implementing the system,
Ward and Mellor regard the process as largely being concerned with providing an
interface shell round the internal software system as shown in Figure 8.15. It
separates the functional operations of the interfaces from their electrical and
physical manifestations and also serves to hide many of the details of how the

Thermocouple
Unit
Qutpat

-
-
-

--" " TRIGGER
(* 1 second *}

ADC

(* 12 bit ADC *)

Convert
10
°C

PreHeat

Preheat Temperature Transducer

e

Figure 8.14" Example of a virtual transducer.

Ward and Mellor Method " 343

Real environment

. |
Embedded
sysiem
l l
. Virtual environment .

Figure 8.15 Relationship of real environment and virtual environment.

functions are implemented. The implementation may involve both hardware and
software. The internal system is seen as communicating with virtual devices; the
details of the actual devices are hidden within the interface modules. This approach
encourages good design in that non-essential details are hidden and also technology-
dependent operations are confined to specific parts of the system and not distributed
throughout the software.

8.4.9 Allocation of Resources

The first stage of resource allocation is to decide on how many and what type of
processing units are required and how the various functions to be performed are to
be allocated to each. Processing units may be digital computers, logic circuits,

344 Real-time System Development Methodologies — 1

analog devices, mechanical devices or human beings. Typically the transformations
specified in the behavioural model will be carried out using digital computer
elements as. the processing units, although some functions may be allocated to
human beings. Use of analog devices and hardwired logic systems will usually occur
in relation to interfacing to the environment. For example, in order to obtain the
temperature measurements for the various oven areas we need to use an ADC and
we may need to precede this with an analog filter.

The next stage is to decide on the task structure and the allocation of the tasks
to the individual processors. In carrying out this process we need to keep in mind
both the standard software engineering design heuristics of:

1. information hiding,
2. coupling and cohesion, and
3. interface minimisation,

and aiso some additional rules of guidance needed for real-time systems:

1. Separate actions (transformétions) into groups according to whether the
action is:
{a) time dependent;
(b) synchronised;
{c) independent;
and try to minimise the size and number of modules containing time-
dependent actions. ’

2. . Divide the time-dependent actions into:

" (a) hard time constraint

(b) soft time constraint
and try to minimise the size and number of modules with a hard time
constraint,

3. Separate actions concerned with the environment from other actions.

The recommended design strategy can be expressed simply as: minimise the part of
the system which falls into the category of having a hard time constraint.

The simplest processor allocation is to ailocate one processor for the whole
system. The choice of processor is then based on its ability to perform all the
activities, and factors such as processor power, memory size, ability to handle
interface devices, and reliability predominate. The more usual case is when it is
necessary to distribute units of the essential model across a set of processors. The
choice of appropriate processor may be dependent on, for example, the need for an
extended instruction set, special memory requirements, or the ability to interface to
special devices. The number and type of processors may also depend on the
environment, the need or appropriateness of distributed processing, the need for low
power consumption, etc. Also at this stage units of the essential model that might
be best performed by special purpose hardware or by a human operator will be
identified, .

The second stage of the design process is to group units of the essential model

Hatley and Pirbhai Method 345

CPU use
Task
C)
B r | 3
R 7 74 % 7
1 2 3 4 5
Tick number

Figure 8.16 Example of a task activation diagram.

that have been allocated to a specific processor into tasks. Tasks are concurrent
activities (even if Tun on a single processor); however, units of the essential model
when grouped into a single task lose their potential concurrency and hence the
grouping of essential model units to form a task introduces a distortion between the
essential and implementation models. Also the essential model supports continuous
data flows and data transforms; allocation to a task introduces sampling and the
implementation constraint that a task takes a finite computation time.

Task allocation thus requires analysis of the system to estimate its performance
in relation to some of the time constraints given in the specification. A simple way
of analysing the timing requirements is to use a task activation diagram. An example
of such a diagram is shown in Figure 8.16. The activation diagram shows the use
of the CPU by each task that hastorun ata fixed cycle time during each clock cycle
(tick) of the real-time clock. Using the diagram the effects of task priority and pre-
emption strategies are clearly seen and assessed.

8.5 HATLEY AND PIRBHAI METHOD

As might be expected the general approach of the Hatley and Pirbhai methodology
is very close to that of Ward and Mellor. There are some differences in terminology
which are summarised in Table 8.6.

8.5.1 Requirements Model

The basic structure of the requirements model is shown in Figure 8.17. The major

346 Reat-time System Developrment Methodologies — 1

Table 8.6 Differences between the Ward and Mellor
and the Hatley and Pirbhai methodologies

Ward and Mellor Hatley and Pirbhai

Essential modetl Requirements model

Implementation model Architecture model

Transformation schema Data-flow diagram
Control flow diagram

Data transformations Process model

Control transformation Control model

Data dictionary Requirements dictionary

Architecture dictionary

differences between this and the essential model of Ward and Mellor are:

¢ separate diagrams are used for data and control;

® only one CSPEC can appear at any given CFD level; and

e all data flows and control flows are shown with single arrow heads; the
distinction between continuous and discrete flows is determined by the way
in which a process is activated. The normal assumption is that a flow is

Data Control
P
! |
1] !
Process
controls -+ — — — — —]
DFB i —— CSPEC Control CFD
flow
—————— L
1
‘ Data
flo
v Data conditions f‘ !
PSPECS |~ ——-——-—————— ~ :
|
Data Control |
t
flow flow
Requirements dictionary ot = — - - —— _J

Figure B.17 The structure of the requirements model. (Redrawn from Hatley and
Pirbhai, Strategies for Real-time System Specification, Dorset House (1988).)

Hatley and Pirbhai Method 347

continuous (it is implicitly assumed that if the activity is implemented on a
digital processor it will be carried out frequently enough to appear
continuous).

Figure 8.18 shows the Drying Oven Controller in the Hatley and Pirbhai notation.
There are several points to note:

1. The process bubbles (transformations) appear on both the DFD and the
CFD. This is because, as the CFD shows, a process can produce a control

OperatorCommands

Process
Qperator

Commands
i

ConveyorSpeed

Check
Conveyor
Speed
3

AreaSetPoints

Control
Area
Femp

HeatQutput

OvenTemperatures

DFP 0 Drying Oven Controiler

Stop L N
- NoCk o
Process N~ oy 92 -
Operator | FBUSC -
Commands ConveyorSpeedError
Star; ———— _ — — — -= Position 2

~ — — — —w Normal

_e]~~ . _ _ - » ConveyorStart

ConveyorNormal! =~~~ =% ConveyorStop
InGuard
Control ()m'(_}.ufr_d_.
Area -7 B
ard
Temp D’rgp_(}‘i g

2

CFD 0 Drying QOven Controller

Figure 8.18 Hatley and Pirbhai notation.

348

Real-time System Development Methodologies — 1

DFA

Action

{process

DFD 0

control)

N\

Event /

Action
{control
signal)

/_‘ CFE=0

7=

State 3 l

CFC=0
CFG = On
CFC CFE

Activate process | Activate process 2 =

\ CSPEC 0
CFA CFB
- T T T
X" o~
CFC__-~
L CFF “a
CFD 0

Figure 8.19 Sequential CSPEC, with its DFD and CFD. (Redrawn from Hatley and
Pirbhai, Strategies for Real-time Systemn Specification, Dorset House (1988).)

Hatley and Pirbhai Method 349

flow as an output. It usually arises as a result of some.form of comparison
which generates an event.

2. The CSPEC is represented by a bar. Although three bars are shown they
form one CSPEC and, because there is only one, it does not need to be
named on the diagram — it takes the number and name of the diagram. In
this case it is numbered CSPEC 0.

3. There is no process activation information shown in the diagram. The
process activation information is held in the CSPEC. The relationship
between CSPECs and the DFD and CFD diagrams is shown in Figure 8.19.

8.5.2 Architecture Modsl

The general structure of the architecture model is shown in Figure 8.20 and as with
the requirements model it is a hierarchical layered structure. In developing the
architecture model a procedure based on using an architecture template is suggested.
Figure 8.21 shows the form of the template. It is akin to the Ward and Mellor
method for enhancing the model by developing virtual terminators but in this
case it is suggested that the template be applied at each level in the requirements
model hierarchy. The architecture model also includes diagrams showing the

Architecture
context
diagram

T

{

Architecture Architecture
flow interconnect
diagrams diagrams

Architecture Architecture

module interconnect

specification specification
Architecture dictionary J

Figure 8.20 Architecture model components. (Redrawn from Hatley and Pirbhai,
Strategies for Real-time System Specification, Dorset House {1 2881}

350 Real-time System Development Methodologies — 1

User interface processing

Process model

Input Qutput
processing Control model processing

Maintenance, self-test, and
redundancy management
processing

Figure 8.21 Architecture template. (Redrawn from Hatley and Pirbhai, Strategies for
Real-time System Specification, Dorset House (1988).)

interconnection technology between various elements of the system. Figure 8.22
shows in more detail the style of the architecture model elemenits.

8.6 COMMENTS ON THE YOURDON METHODOLOGIES

Both methodologies — Ward and Mellor and Hatley and Pirbhai — are simple to
learn and have been widely used. They are founded on the well-established
structured methods developed by the Yourdon organisation and hence over the years
a lot of experience in using the techniques has been gained. For serious use on large-
scale systems they both require the support of CASE tools. The labour involved in
checking the models by hand is such that short cuts are likely to be taken and
mistakes are bound to occur.

It can be argued that the methods are really only a set of procedures for
documenting a specification and a design and to some extent this is true. The
analysis procedures are minimal and adequate checking for consistency can be
performed only with the support of a CASE tool. However, the methodologies are
still useful in that the procedures they recommend provide a sensible way of
preparing both a specification and a design in that they encourage the development
of hierarchical, modular structures.

Of the two, the Hatley and Pirbhai method is the more structured and
formalised in its approach. Its diagrams are less cluttered than those of the Ward
and Mellor method and, once the separation is understood, are easier to follow.
Many CASE tools provide alternative displays which allow a choice of either
separate diagrams or a combined diagram with switching between the two forms.

The weakness of both methods lies in the allocation of processors and tasks.
The suggestion that one allocates activities to processors and then subdivides the

Comments on the Yourdon Methodologies 351

-—-n
1 r_—__‘
| -
A'-\L B | c
KL_j The
system D
H F[;
r'J L
- G E

AM
4
[nternal bus

N R D —t
AM M AM AM AM AM AM
3 1 P 2) 3 i 2
L
: \daimenance bus
H Gf_| AM | - AM
5 5
¢ NG ,

AFD 0: the system

AID 0: the system

Architecture
module
specifications

Architecture dictionary

Architecture
interconnect
specifications

Figure 8.22 The structure of the architectural model. (Redrawn from Hatley and
Pirbhai, Strategies for Real-time System Specification, Dorset House (1988).)

activities into tasks allocated to each processor appears at first sight a sensible
way to proceed. However, when it is tried one soon realises that the information
required to do this is not available. How can one determine the processor
requirements until at least some detailed coding has been done? How can tasks be
structured until some estimate of the feasibility of finding a suitable task schedule
has been carried out? Both Ward and Mellor and Hatley and Pirbhai remain silent
about the:e issues.

352 Real-time System Development Methodologies — 1
8.7 SUMMARY

The structured methodologies on which both Ward and Mellor and Hatley and
Pirbhai are based are a widely used method of producing a requirements model, For
serious use, however, the support of a CASE tool is essential, It is only through the
use of a CASE tool that consistency, correctness and full adherence to the standards
can be maintained.

The extension of the method to attempt to support design through :he
development of an implementation or architecture model is less successful. Of the
two, the Hatley and Pirbhai approach is most well developed and useful. The lack
of analysis tools is a weakness but this will eventually be remedied through the
development of such tools within CASE environments. For a full understanding of
the methods the books by Ward and Mellor (1986) and by Hatley and Pirbhai (1988)
must be consulted.

